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ABSTRACT

With increasing range of vehicles in our day-to-day life, managing conveyance is one among the main problem 
faced by urban areas. Automatic Number Plate Recognition (ANPR) technology may be a tool that is applied 
to good cities in parking management systems and toll booths on highways to beat this downside. ANPR is 
employed to localize the license plates then extracting the text from the image, segmented each character 
and recognize the characters. Various localisation algorithms, segmentation and character recognition 
algorithms were used to complete the process. The primary objective of our research is to develop a model 
for number plate identification utilizing bio inspired neural network model and compare with existing neural 
network models based on different illumination, tilted images blurred and shaded conditions. In this research, 
we used spiked neural network, a third-generation neural network model, to construct an automatic number 
plate recognition model inspired by biotechnology. The model shows 70 % accuracy in normal images. The 
model would be tested for neuromorphic data sets for SNN model to enhance the SNN performance.
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RESUMEN

Con una gama cada vez mayor de vehículos en nuestra vida diaria, la gestión del transporte es uno de 
los principales problemas que afrontan las zonas urbanas. La tecnología de reconocimiento automático de 
matrículas (ANPR) puede ser una herramienta que se aplique en las buenas ciudades en los sistemas de 
gestión de estacionamiento y en las cabinas de peaje de las autopistas para superar este inconveniente. 
ANPR se emplea para localizar las matrículas y luego extraer el texto de la imagen, segmentar cada carácter 
y reconocer los caracteres. Se utilizaron varios algoritmos de localización, segmentación y reconocimiento 
de caracteres para completar el proceso. El objetivo principal de nuestra investigación es desarrollar un 
modelo para la identificación de matrículas utilizando un modelo de red neuronal bioinspirado y compararlo 
con modelos de redes neuronales existentes basados   en diferentes condiciones de iluminación, imágenes 
inclinadas, borrosas y sombreadas. En esta investigación, utilizamos una red neuronal con picos, un modelo 
de red neuronal de tercera generación, para construir un modelo de reconocimiento automático de matrículas 
inspirado en la biotecnología. El modelo muestra una precisión del 70 % en imágenes normales. El modelo 
se probaría en busca de conjuntos de datos neuromórficos para el modelo SNN para mejorar el rendimiento 
del SNN.

Palabras clave: Algoritmos; Biotecnología; Redes Neurales de la Computación; Área Urbana.
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INTRODUCTION
Automated number/license plate recognition system (ANPR/ ALPR) is a type of intelligent transportation 

system (ITS) technology that can extricate each vehicle as distinct by recognizing the letters of the number plates. 
The default number identification system detects many types of applications to fit without controlling access to 
a collection point or parking area or border. ANPR technology has seen the rapid acquisition and dissemination 
of many agencies around the world to improve their enforcement, investigative, and security aspects. This 
helps to gather vehicle details that minimize annoying and time-consuming lab or. ANPR is particularly useful 
for government agencies in tracking down stolen vehicles, traffic offenders, crime-related vehicles, or other 
popular vehicles. Other applications include parking management, traffic monitoring, automatic street ticket 
issuance, automatic toll payment, and maintenance. 

ANPR work as follows: 
● Detect vehicles 
● Localizes plate 
● Extract characters 
● Recognize characters 

In ANPR, the camera captures images of the car, and then, utilizing the imaging process, the computer 
interprets and recognizes the information on the number plate, and then the image will be extracted and as a 
result the letters of the number will be identified. 

Generally, to identify a vehicle number, the number plate must be drawn from the vehicle image. Accurate 
location detection of number plate is an important step in the process of character recognition. ANPR can be 
used to automatically open a barrier in a secure member area of Border & Custom Checkpoints to prevent 
crime. It can be used at Highway Toll Collection by knowing the vehicle type & to charge toll tax accordingly. It 
can be used to control the traffic flow management and Red-Light Violation enforcement.

Literature survey
The paper(1) discuss the traffic recognition system based on Convolutional Neural Network (CNN). Selecting 

sub-candidate windows, such as dividing the candidate areas, is part of this method's unsupervised partition 
technique; use CNN to do the computation. This model is used to recognize logos of vehicle. SVM is used for logo 
classification. Initially shallow CNN is used to retain all the features and then deep CNN is used for recognition. 
The main drawback is the system failed for images having illumination changes and noise and the system fails 
if two of more plates in the image. In(2) the algorithm uses an integration layer to reduce the amount of data 
processing, further graying and normalization are used to enhance the image. A 2-step convolution layer is used 
to calculate the performance which is based on ResNet. This algorithm is checked only on CCPD (Chinese City 
Parking Dataset). In(3) the number plate is recognized from the image using a prepared deep learning model. 
Different types of vehicles that contain number plate of different shapes and sizes are prepared. 80% images 
are used for training and 20% data is used in testing. A machine learning model is used for labelling and used 
to classify features from a data set. The labelled data set is applied in CNN. The license plate with a different 
background color cannot be detected by this technology.(4)

Discuss about the single shot Detector (SSD) neural network used for plate detection and VGG-16 used for 
feature extraction, RESNet-18 is applied for segmentation and recognition. This paper uses AMQP protocol 
and RabbitMQ software vendor is used to increase interoperability modules. The main draw back is that it 
involves huge computation cost and resources. It is not suitable for noisy and illuminated data set.(5) With 
weight transferred from highly trained networks, the software includes two YOLO-based tiny and fast networks 
that operate in cascade mode. The algorithm uses a second network for character acquisition, with a focus 
on Brazilian LPs, to gain excellent memory and accuracy of 2: 2ms performance with a good GPU. It uses 
straight edge features to make LP local. This algorithm uses vertical edge features to localize the LP and CNN 
network to segment and recognize the numbers. The main draw back is that if there were many vehicles in 
the frame the accuracy would reduce. (6) In this paper Road Wolf ANPR car camera and video frame scanner is 
used. The line and column indexes of the plate area are obtained by analysing the connected part. Connected 
Component Labelling (CCL) is used where each character is labelled separately and identified in the next step. 
The recognition is obtained through CNN. The draw back is it is tested with less data set of 25 images and fails 
when the speed of the vehicles is high and not tested for skew angles and inconsistent plates. (7) The license 
plate extracts the vertical edges of the input plate based on a 2D wavelet transformation. The maximum 
density of the vertical edge is first calculated to determine the possible locations of the license plate. Then the 
CNN is used to confirm whether or not these possible locations are indeed car plates. Using a straightforward 
technique based on the vacant space between the letters, the characters are separated when the license plate 
is acquired.  Ultimately, training for a different CNN section kept these candidates apart.(8)

Employs Cascaded CNN which keeps high precision R-CNN. The detection network is divided in to P-Net for 
number plate acquisition. R-Net to train the candidate and uses NMS system to clean broken windows. O-Net 
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acquires the four-spot of the license plate. CRNN and CTC methods were employed to retrieve the characters 
without separate them. (9) In this paper, author solves the ALPR task by two-level deep neural networks (DNN) 
to train. Object recognition CNN using YOLO detects license plates. One engine uses multi-image convolution 
recurrent neural networks for free detection and classification. The second engine works on shared acquisition. 
It takes more computation time for processing.(13) two-step segmentation and training were suggested in this 
work. An SSD was used to distinguish three rows of license plates, while Inception-v3 and MobileNets were 
used to train the system. The characters of the numbers are divided and trained in the same ways.(14) MD-YOLO 
method with Back propagation, leaky and identity function is used as a methodology in this paper. To acquire a 
car license plate, each input image is separated into standard S × S grid cells. The cell containing the vehicle 
plate center is used for this purpose.(16) discussed that layered ANN was used consisting of input, hidden, and 
output layers. A genetic algorithm will be used to calculate the number of hidden layers. The input layer has 109 
neurons (108 input for pixels and 1 for bias). The output layer has 36(A-Z 0-9). The learning rate, momentum 
rate, and number of hidden neurons may all be concurrently optimized by a genetic algorithm. Because there 
are more hidden layers, there is a disadvantage: slower feed forward times.  The literature survey summarizes 
that the techniques used such as 

CNN, RNN, deep CNN etc. will give greater accuracy but requires more resources and time for computation. 

Proposed System
The proposed system aims to overcome problems in the existing system like the cost of computation, low 

accuracy, complex images, etc., by incorporating SNN (Spiking Neural Network) which is a 3rd generation neural 
network model using surrogate leaky integrate fire model. SNN mimics human neurons, which increases the 
speed and efficiency of plate recognition. 

METHODOLOGY
SNN processes the data in form of spikes where the single-bit line toggles between 0 and 1 as shown in figure 

1,(11) the transmission of spikes from one neuron to another takes place only when the threshold or membrane 
potential is reached, thus saving computation, and making the model more efficient. The input layer of the 
model converts the images of segmented characters to spikes trains, which are passed on to the hidden layers 
also called synapses. The hidden layer modulates the spikes with the help of weights and then sends them to 
the output layer. The output layer will process the spikes with the help of the activation function and then 
generate the output spikes.

Figure 1. SNN membrane potential model(11)

The input image will be taken from the given dataset, Then, the number plate will be cleaned to remove 
noise from the plate. Using linked components analysis, the characters on the license plate will be divided into 
segments.  Then, by using a segmented plate the character will be recognised. We are using three different 
algorithms namely CNN, SNN and Tesseract OCR for character recognition. At Final stage, we will display the 
output of the recognised number with the accuracy percentage of each algorithm. 

We have used OpenCV (Computer Vision Library), Jupyter Notebook, Python to implement the System and 
used real time data sets to train and test. The users can upload the plate image using the interface designed using 
Django, the interface supports uploading of single/multiple plate images. The uploaded image will be stored in 
the media and passed on to segmentation, which will be an internal process without any user communication. 
The segmented characters will be sent to all three models: CNN, SNN and tesseract and the accuracy will be 
calculated based on the number of characters recognized correctly. After successful recognition all the three 
results and accuracy respectively from CNN, SNN and tesseract will be displayed to the user along with the 
plate with segmented boundaries in a card view. 

https://doi.org/10.56294/sctconf2024698
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Figure 2. Block diagram for ANPR

Implementation
Input image

We used Django framework to create the user interface to upload the data sets. This module is developed 
to provide a simple frontend for the application. The accuracy defined to get the accuracy of given images by 
using all the algorithms provided such as CNN, SNN and Tesseract OCR. Album is defined to request the URL 
page to be displayed by getting a request. get_file_name is defined to get the file to get it uploaded there. 
get_segmented_plate is defined to get the segmented image of the number plate as well in the output. image_
upload is defined to upload the images from devices and show the final output to the display.

Character Segmentation
Trying to decompose a single image comprising a sequence of characters into smaller images of each 

individual character is known as character segmentation. We have used localized plate images as input for 
our model. Threshold is applied to the plate to reduce the noise. The characters are divided using Connected 
Component Analysis.  If the area is greater than the threshold and the ratio of height and width is less than the 
threshold, a bounding box is drawn around the character.  The character is resized and stored in a list. 

Figure 3. Character Segmentation

Figure 4. Segmentation code
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Find_countours is defined to draw the bounding box on the number plate images. First, it detects the 
contours in the binary image and send the coordinates of the rectangles enclosing it. Then it will check the 
length of the contours to filter out the characters by contour’s size. Then the image will be segmented by using 
pre-processed cropped license plate image. 

Character recognition 
We used a 28x28 pixel image to train. In CNN Image Data Generator is used to augment when your model is 

still training, images in real-time. In SNN method we use 3 layers of neurons to recognize the character namely:
a) Input layer (28*28 neurons) 
b) Hidden layer (1000 neurons) 
c) Output layer (36 neurons) 

CNN
We used six hidden layers, one output layer, and one input layer. MAX Pooling Layer and Flatten Layer 

make up the hidden layer. By choosing the largest element from the feature map region that the filter covers, 
maximum pooling is a kind of pooling operation. The most crucial characteristics of the preceding layer will 
thus be included in the output that follows the maximum pooling layer. The flattening layer is used to make 
a multidimensional input one-dimensional. This is commonly used when moving from a convolution layer to a 
fully connected layer 

Figure 5. CNN code

Tesseract
 Runteserract() function is defined which uses in built function to run the tesseract algorithm. In this, the 

image will be read, then it will be gray scaled and at last the character will be extracted from the image plate 
in the form of strings. 

Figure 6. Tesseract Code

https://doi.org/10.56294/sctconf2024698
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SNN
Leaky surrogate neurons are used to train the model on a digital dataset with minimal loss, which can be 

achieved using a backpropagation algorithm. Where 𝚯 is step function 

Equation 1. Step Function
                                               

If we consider a single isolated time step, the derivative of the step function evaluates everywhere except 
when Uthr= 𝝷 where it goes to infinity. Which means no learning takes place, thus resulting in dead neuron 
problems. This is overcome by using a surrogate model where the step function remains as it is during the 
forward pass but during back propagation the derivative of S will be replaced by S. If S does not spike, then 
spike gradient is 0, if S spikes then spike gradient is 1. 

Figure 7. SNN Model(12)

Figure 8. SNN sample code
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Figure 9.Sample Data sets

We have a dataset of different varieties of number plates like Blurred number plate, Normal number plate, 
Illuminated number plate and Tilted number plate.

RESULTS AND DISCUSSION

Table 1. Performance comparison of 3 different models

Sl. No Techniques / Types of 
dataset

CNN 
(Accuracy %)

SNN 
(Accuracy %)

Tesseract 
(Accuracy %)

Images
 used

1 Normal 78 78 85,3 158

2 Blurred 44,8 40,3 57,7 14

3 Illuminated 57,3 57,2 64,7 44

4 Tilted 18,5 16,5 19,8 32

5 Shaded 48,5 38,7 67,1 45

6 Yellow 64 36 44 6

Figure 10. Performance analysis of Different Types of data set

https://doi.org/10.56294/sctconf2024698
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In this study, Automatic Number Plate Recognition (ANPR) using Neural Network, uses two Deep Learning 
techniques, CNN and SNN, as well as an OCR technology called Tesseract. The number plate characters are 
displayed after the system receives a plate image, processes it using a variety of Computer Vision techniques 
(such as grayscale, binary thresholding, etc.), segments the characters using Connected Component Analysis, 
and then applies the Deep Learning algorithms, including OCR. 

With the planning and execution of each of its several stages, the system has accomplished its goals. The 
stages are Image acquisition, image segmentation, and character recognition. The primary testing conducted 
has produced an overall success rate for OCR of 85 %, CNN of 78 % SNN of 70 % for normal images. In the 
complementing trials that have also been conducted for various sorts of images, such as slanted, illuminated, 
etc the ANPR system will need to be improved in several areas to perform well enough. Using time series 
(neuromorphic) datasets for SNN model training can enhance SNN performance. SNN becomes stable over time 
because it is still in the research stage and might need lot of fine-tuning adjustments. 
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